• Login
    • Join
  • FOLLOW:
  • Subscribe Free
    • Magazine
    • eNewsletter
    Checkout
    • Magazine
    • News
    • Research
    • Markets & Technologies
    • Raw Materials
    • Top Companies
    • Directories
    • Jobs
    • Events
    • Microsites
    • More
  • Magazine
  • News
  • Research
  • Markets & Technologies
  • Raw Materials
  • Top Companies
  • Directories
  • Jobs
  • Events
  • Microsites
  • Current / Back Issues
    Features
    Business Corner
    Editorial
    Digital Edition
    eNewsletter Archive
    Our Team
    Editorial Guidelines
    Subscribe Now
    Advertise Now
    World Reports
    eBook
    Top Features
    Mixing Equipment Directory

    The Wood Coatings Market

    Antimicrobial Coatings Market

    Additives Update

    Pigment Supplier Directory
    Breaking News
    Online Exclusives
    Distributor News
    Financial News
    Paint & Coatings Manufacturer News
    People In the News
    Price Increases
    Product News
    Video Bites
    Raw Materials & Equipment
    Suppliers News
    Live From Shows
    Top News
    Gelest CEO Elected to National Academy of Engineering

    PPG Appoints Tony Wu as VP, Automotive Refinish, Asia

    PPG Appoints John Bruno as VP, Investor Relations

    AkzoNobel Kicks off Paint the Future Startup Challenge in China

    Hempel Hires Global Head of Renewable Energy
    Top Companies report
    Market Research
    White Papers / Tech Papers
    Technical Papers
    Product Spec Sheets
    World Reports
    Adhesives and Sealants
    Aerospace Coatings
    Architectural Coatings
    Automotive Coatings
    Automotive Refinish
    Business Operation
    Color Trends & Forecast
    Construction Chemicals
    Corrosion Control
    Industrial Coatings
    Laboratory Equipment
    Marine Coatings
    Market Trends & Forecast
    Powder Coatings
    Production Equipment
    Radcure Coatings
    Special Purpose Coatings
    Wood Coatings
    "Green" Coatings

    Nippon Paint Marine Wins Korea Export Award

    ECOS Paints Launches Lisa Tharp Colors

    BYK-Gardner Launches VMA-Getzmann TORUSMILL

    Sensory Analytics Announces Issuance of Broad New Patent Covering Coating Thickness Measurement

    Union Process Develops Attritor for Inks, Coatings Supplier
    Additives
    Binders
    Pigments
    Solvents

    OQ Chemicals Increases Carboxylic Acids, Esters Prices

    Arkema Reports Full-year 2020 Results

    New Increase in Kynar Fluoropolymer Capacities at Arkema's Chinese Site

    Emerald Kalama Chemical Acquired by LANXESS

    Raw Material Suppliers, Distributors Part of Recent M&A Activity
    Buyers Guide
    Company Capabilities
    Distributor Guide
    Add New Company
    International Buyers Guide Companies
    Active Minerals

    Clariant Additives

    Shepherd Color Company, The

    Eagle Specialty Products

    Siltech Corporation
    Industry Events
    Webinars
    Live From Show Event
    Top Events
    Surface Finishing Mexico 2021

    Cleveland Coatings Society Zoom Meeting

    Cleveland Coatings Society Zoom Meeting

    PCI Powder Coating Week

    Southern Society for Coatings Technology Annual Meeting and Technical Conference
    Companies
    White Papers/Tech Papers
    Product Spec Sheets
    Equipment
    Literature/Brochures
    Videos
    International Buyers Guide Companies
    Pilot Chemical Company

    Siltech Corporation

    Keim Additec Surface USA LLC

    Shepherd Color Company, The

    Clariant Additives
    • Magazine
      • Current / Back Issues
      • Features
      • Editorial
      • Business Corner
      • Digital Edition
      • eNewsletter Archive
      • Editorial Guidelines
      • Subscribe Now
      • Advertise Now
    • Breaking News
    • Directories
      • Buyers Guide
      • Distributor Guide
      • Corporate Capabilities
      • Trade Associations
      • Add Your Company
    • Markets & Technologies
      • Adhesives and Sealants
      • Aerospace Coatings
      • Architectural Coatings
      • Automotive Coatings
      • Automotive Refinish
      • Business Operation
      • Color Trends & Forecast
      • Construction Chemicals
      • Corrosion Control
      • Industrial Coatings
      • Laboratory Equipment
      • Marine Coatings
      • Market Trends & Forecast
      • Powder Coatings
      • Production Equipment
      • Radcure Coatings
      • Special Purpose Coatings
      • Wood Coatings
      • "Green" Coatings
    • Raw Materials
      • Additives
      • Binders
      • Pigments
      • Solvents
    • World Reports
      • Africa Report
      • China Report
      • India/Asia Pacific Report
      • Europe Report
      • Latin America Report
      • Market Research
      • Russian Report
    • Top Companies
    • Online Exclusives
    • Slideshows
    • Experts Opinions
    • Blog
    • eBook
    • Infographics
    • Videos
    • Podcasts
    • Whitepapers
    • Jobs
    • Microsites
      • Companies
      • White Papers/Tech Papers
      • Product Spec Sheets
      • Equipment
      • Literature/Brochures
      • Videos
    • Events
      • Industry Events
      • Live From Show Event
      • Webinars
    • About Us
      • About Us
      • Contact Us
      • Advertise With Us
      • Privacy Policy
      • Terms of Use
    Features

    Optimization of Curing Conditions for a Chemical Resistant Tank Coating with the Help of Dynamic Mechanical Analysis

    ...

    Gard Reian02.02.09
    Currently, when the necessary curing conditions for a coating are to be found, the coating is applied to test panels, which are then cured at different temperatures and for different periods of time. The different panels are then immersed in water and other chemicals of interest, at different temperatures. These experiments are time consuming to say the least, as one might have to wait up to a year to get adequate results. By using DMA to investigate the glass transition state (Tg) of the coating one can, with reasonable certainty, decide the needed curing conditions for a coating to be used at a given working temperature.

    In addition to the pure temperature factor, it is widely known that postcuring of epoxy paints at elevated temperatures most often will improve a films chemical resistance. This can be explained theoretically, as elevated temperatures increase the reaction rate of curing. The molecules "trapped" at low temperatures can move more freely and therefore react more easily. This will result in a "tighter" polymer matrix and a tighter polymer matrix means less diffusion through the film. Diffusion of molecules through the film is often a problem, especially with small molecules like methanol and water. A tighter net will for epoxy films often result in a harder, and less flexible, film. This "tightening" of the polymer network can be measured by calculating the crosslink density using results from DMA.

    It is also important to know how low we can go on initial curing temperature. Is curing the film for two weeks at 5�C tantamount to curing for two weeks at 23�C as long as one post cures the coating at a given elevated temperature? To know this would save one a lot of time required for testing.

    Dynamic Mechanical Analysis Theory



    Dynamic mechanical analysis (DMA) is a method involving application of an oscillating force to a sample and analysis of the material's response to that force.[1] At right Figure 1 shows how by applying stress to a film results in a material response (strain) and a phase lag between the applied stress and resulting strain.

     
    Definitions of dynamic properties are given below in terms of maximum oscillatory strain (ε0), maximum resulting stress (σ0) and phase lag (δ) between strain and stress.

    Where E′ is the storage modulus, E′′ is the loss modulus and tan δ is the loss tangent. Increase in this ratio relates to a harder and (often) more brittle polymer.

    The crosslink density (Mc) is usually calculated from the minimum value of storage modulus E′ (also called the rubber modulus) in the rubbery plateau. The theoretical relation between molecular weight between two cross linking points (Mc) and the tensile storage modulus (E′) can be expressed as follows:[2]


    The oscillating force applied to the sample is most commonly sinusoidal as shown here. By measuring the amplitude of the deformation (material response) curve and the phase difference between applied stress and material response (strain), quantities like modulus, damping and Tg can be measured.

     
    Where E′ is the storage modulus, ρ is the materials specific gravity, R is the ideal gas constant, T is temperature and Mc is the molecular crosslink density. The density of the material increases as the molecular crosslink density value, Mc, decreases (shorter molecular chains between crosslink points in the polymer network).

    The glass transition temperature (Tg) can be found from the storage modulus curve, the loss modulus curve or the tan δ curve. This is shown below in Figure 2.


    This figure shows how Tg can be found from any of the curves storage modulus (~97�C), loss modulus (~98�C) or tan δ (~108�C).


    As seen from Figure 2 the Tg can vary quite a bit (up to 11�C in this case) depending on which function is used to decide Tg. One should therefore always keep in mind the degree of uncertainty when it comes to deciding Tg and always decide Tg from the same function within a set of experiments. Also, one should take into account that the glass transition for a polymer blend is never a set temperature but rather a temperature distribution, where Tg is the maximum.

    Experimental part




    Tg is the glass transition temperature maximum found from the tan δ curve. E'm is the minimum storage modulus while TE'm is the temperature at minimum storage modulus. Mc,min is the crosslink density at E'm. The "curing conditions" column gives the curing temperatures with number of days given in brackets.
    Materials: The tank coating investigated here is based on a novolac epoxy binder with an amine adduct as the main curing agent. The formulation also contains different additives, extenders and pigments picked specifically to improve the barrier effects of this coating.

    Preparation of the Coating: The two-component coating was applied to smooth plastic polyester films using a 250 μm applicator. The panels were cured at different temperatures in climatic air chambers or in hot water/hot oil baths.

    Dynamic Mechanical Analysis: A DMA 2980 analyzer from TA Instruments was used to determinate storage modulus, loss modulus and tan δ. The Tg was determined from the peak of the tan δ curve. The samples were heated from -50�C to 200�C with a heating rate of 4�C/min. The preload force was set to 0.020 N and the amplitude to 5 μm.

    Results and Discussion



    Calculated results from the primary experiments are given below in Table 1. All coated plates were cured at a given temperature for 14 days and then post-cured at an elevated temperature for a variable number of days (1-5 days).

    Effect of Curing Temperature on Glass Transition Temperature
    As expected, the glass transition temperature (Tg) increases with increasing post cure temperature. Figure 3 shows how varying the post cure temperature affects the tan δ curve and the Tg of the paint film.

    The obvious trend seen from Figure 3 is the increase in glass transition temperature with increasing post cure temperature. As mentioned earlier on, tan δ is the relationship between storage modulus and loss modulus (see equation [3]). As post cure temperature is increased the film becomes less flexible and the value of storage modulus increases relative to the value of loss modulus. Consequently, the absolute value of tan δ decreases with increasing post cure temperature.


    This graph shows tan δ of paint films cured at 5�C for 14 days and post-cured in hot air at different temperatures for five days.

    Below Figure 4 shows how varying initial cure temperature (using a fixed post-cure temperature) affects the tan δ curves and the Tg of the paint film.


    This figure shows how tan δ and Tg are affected by varying the initial cure temperatures (5�C, 10�C, 23� and 40�C) using a fixed post cure temperature (60�C).

    From Figure 4 one can see that as long as the sample is post cured at an elevated temperature the initial cure temperature is close to insignificant when it comes to influencing Tg. Even crosslink density changes little with the different initial cure temperatures (see Table 1). This tells us that we can cure this coating over the interval 5�C - 40�C as long as we post cure at a fixed elevated temperature. This is valuable information indeed, as seasonal changes in air temperature at application sites are substantial, and the coating can also be used at several different locations worldwide. One should note that these results are based on films that are post-cured only a few weeks after application. There is a time lag here that has to be taken into account. The desirable reaction is, of course, the curing of epoxy with the amine hardener. The competing reaction, between the amine hardener, carbon dioxide and water will cause problems over time, at least in poorly controlled humid environments. The product of this reaction is amine carbonates (amine blush). Amine blushing is described in detail by Rinker et al. [3] Due to this one has to make sure the coating is post-cured within a reasonable time limit (and at least within three months of application).

    Effect of Curing Temperature on Storage Modulus
    The general observed trend is an increase in storage modulus as the post-cure temperature is increased, as shown below in Figure 5. This is as expected since a higher cure temperature gives a higher crosslink density and, consequently, a less flexible film.


    This graph shows storage modulus (E') of paint films pre-cured at 5�C for 14 days and post-cured at different temperatures for five days.

    From Figure 5, looking at the interval between 0�C and 50�C, we clearly see that the film gets less flexible and more brittle with increasing post-cure temperature (the storage modulus curves are shifted upwards). There is little difference in flexibility, however, between the coating post cured at 60�C and the coating post-cured at 80�C. This tells us that we can safely increase the post-cure temperature without having to worry too much about brittleness and cracking of the film. Even though the coating films post-cured at 60�C and 80�C are less flexible than the film post-cured at 23�C, neither are what one would call a brittle coating. Especially at working temperatures above 50�C all the films can be considered quite flexible.

    Glass Transition Temperature as Function of Post Cure Temperature
    A plot of Tg versus post-cure temperature gives some very interesting curves as seen below in Figure 6.


    This graph shows the effect of post curing temperature on the glass transition temperature, Tg. The paint film was first cured for two weeks at 5�C, 10�C, 23�C and 40�C, respectively. This was followed by a five day post-cure at 23�C, 50�C, 60�C and 80�C, respectively. Each curve represents an initial cure temperature.

    As seen from Figure 6 the range between 50�C and 60�C is critical with a leap in the nearly linear Tg curve. Although hard to prove, a critical chemical change is probably the reason for this break in linearity. One hypothesis is that at temperatures above 60�C we start to see the effects of some homopolymerization between epoxy groups, causing a jump in Tg values. But then again, this is a hypothesis that needs to be studied further before any conclusion is drawn. We can, however, use what is seen here to argue that increasing post-cure temperature from 50�C to 60�C or above will make the coating more chemical resistant.

    Effect of Curing Time on Glass Transition Temperature
    Figure 7 shows how variation in post curing time affects Tg. It is of great value to know how long one has to post cure for the film to reach an optimal condition. For this specific coating a Tg of around 100�C is a satisfactory result.


    This figure shows how Tg and tan δ are affected by varying post cure times and temperatures.

    As the desired Tg for this coating is around 100�C we see from Figure 7 that post-curing for as long as five days is hardly necessary, neither at 60�C nor at 80�C. For a 60�C post-cure two days is suffcient and for an 80�C post-cure no more than one day is necessary to reach the desired Tg. The results are the same independent of the initial cure temperatures tested (5�C, 10�C, 23�C and 40�C).

    Crosslink Density
    The molecular crosslink density (Mc) can be calculated using equation [4]. This method can be used to compare results within the same set relative to each other.

    Looking at the results (see Table 1), one can see that the molecular crosslink density of the polymer film, M0c , decreases when the post-curing temperature is increased from 23�C to 50�C. Increasing the curing temperature above this, however, does not seem to affect M0c radically.

    Glass Transition Temperature and Chemical/Corrosive Resistance

    Chemical and corrosive resistance linked to Tg. The degree of blistering, discoloration and/or rust are considered. The curing condition is given together with Tg in the top row. The results recorded here are after six-months of exposure for chemical tests, 250 days for the rest (or until failure).
    As mentioned in the introduction tank coatings needs to be thoroughly tested in different chemicals and corrosive environments before a real-life product can be launched. Some of these tests are summarized in Table 2.

    In addition to chemical testing the paints are also subjected to accelerated corrosion tests including hot water testing, salt spray (ASTM B 117), prohesion (ASTM G 85), continuous condensation (ISO 6270), cathodic disbondment (ASTM G8, ASTM G42) and seawater immersion. The plates tested in salt spray, prohesion and seawater are scribed to see how well the paint system can handle damage in the film.

    As seen from Table 2 the 60�C post-cured coating does not differ much from the coating cured at 23�C. A few exceptions are seen with acetic acid, ethanol diamine, tetrahydrofuran, cathodic disbondment and condensation, in which the 23�C cured coating shows some blistering while the post-cured coating is performing better. It should be noted that the panels in these tests were post cured using hot air and that one might get completely different results with a hot water or hot oil cure.

    Hot Air Post Curing Versus Hot Liquid Post Curing
    In practice a tank coating is often post cured using a hot cargo instead of or in addition to hot air. It was therefore of interest to use DMA to study some paint cured using hot liquid instead of hot air. The results are given in Table 3.

    The results given in Table 3 are very interesting, but their interpretation is not straight-forward. The Tg is about a factor of 7�C-14�C higher for hot water post cure than for hot air post cure. And the crosslink density roughly double.


    Tg is the glass transition temperature maximum found from the tan δ curve. E'm is the minimum storage modulus while. TE'm is the temperature at minimum storage modulus. Mc,min is the crosslink density at E'm. The "curing conditions" column gives the curing temperatures with number of days in brackets.
    One explanation to these phenomena might be that the small water molecules migrate somewhat into the paint film, which in turn causes the film to soften to some degree. This temporary swelling, in addition to the higher temperature, might increase the molecular movements of the unreacted polymer side chains and/or the amine hardeners enough to make for a better cure than the one achieves using just hot air (resulting in a higher Tg). When the water is removed and the paint ventilated most of the trapped water evaporates, leaving behind a fully cured paint film.

    One might argue that not all the water leaves the film, but some molecules remain, acting as a softening agent. This is why we see an increase in the molecular crosslink density, calculated from storage modulus (see equation [1]).

    Of course, these are only mere hypotheses, which need further study to accept or reject. However, if one assumes these hypotheses to be valid, further study is needed to see if the painted steel is affected by the uptake of water into the paint film.

    In actual application oil is often used for post curing and as seen from Table 3 this differed to some extent from post curing with hot water. The molecular crosslink density, M0c, is almost half that seen for the water immersed panels.

    One possible explanation for this effect is that both water and oil work as a softening agent, but oil to a lesser degree than water due to the obvious difference in molecular size.

    The storage modulus curves of the coating post cured in different media are shown below in Figure 8.


    This figure shows how storage modulus are affected by varying the post cure medium.


    From Figure 8 it can be seen that post curing the coating in hot water or hot oil gives a softer/less brittle film than curing the coating in hot air at the same temperature. Indeed, the storage modulus is more than double up to 50�C. This confirms the hypothesis that both water and oil is taken up to by the coating, to some extent, working as a softening agent. The danger of this, however, is that depending on what chemicals are transported, this higher flexibility might only be temporary. If one were to load a hot water cured tank with for example hydroxide slurry (which is very hygroscopic in nature) all the remaining water could possibly be drawn out of the coating leaving behind a highly stressed coating full of "gaps". This could in turn leave to cracking and, consequently, corrosion of the underlying steel structure.

    Conclusion



    A novolac epoxy-based tank coating was analyzed using dynamic mechanical analysis resulting in a greater understanding of the coating system and how it is affected by varying post curing time, temperature and medium. As expected, Tg was found to increase with post curing time and/or post curing temperature. A suffciently good Tg value (~100�C) was achieved by curing at 60�C for two days or 80�C for one day, regardless of cure medium. Tg was also found to be nearly independent of initial cure temperature (5�C - 40�C) as long as the coating was post cured at an elevated temperature.

    Good correlations were found between mechanical properties of the coating and real life testing. The post-cured film was denser and its glass transition occurred at a higher temperature, which resulted in a more protective coating that could withstand higher working temperatures and more corrosive chemicals.

    Research into the effect of different post curing media showed that post curing in either hot water or hot oil resulted in a more flexible coating with a higher glass transition temperature compared to the coating post cured in hot air. This heightened flexibility might however only be temporary and so this needs to be studied further.

    Acknowledgements



    First of all, I would like to thank Vivian Farstad for introducing me to DMA as a valuable method for deciding coating properties. Secondly, I could not have written this article had it not been for the encouragement from my manager, St�le Nordlien.

    Bibliography



    [1] Menard, Kevin P. Dynamic Mechanical Analysis: A practical introduction; 1st ed., CRC Press LLC, Florida 1999.

    [2] Hill, Loren W. J. Coat. Tech., 64, 1992, 29-40.

    [3] Rinker, E. B., Ashour, S.S. and Sandall, O.C. Ind. Eng. Chem. Res., 39, 2000, 4346-4356.

    Related Searches
    • Industrial Coatings
    • Additives
    • Special Purpose Coatings
    • paints
    Related Knowledge Center
    • Industrial Coatings
    • Pigments
    • Corrosion Control

    Related Features

    • Additives

      Additives Directory

      Here is a look at the latest offerings from select additives suppliers. For more information on the products listed, please contact the company directly.
      03.13.20

    • Industrial Coatings | Powder Coatings
      High Performance Pigments Market

      High Performance Pigments Market

      With an overall value of $4.76 billion, the market for high performance pigments is poised for steady growth worldwide.
      Kerry Pianoforte, Editor 08.10.16

    • Architectural Coatings | Industrial Coatings | Marine Coatings | Wood Coatings
      Asia Pacific Report

      Asia Pacific Report

      Key findings indicate that the market for paint and coatings in the Asia Pacific region is poised for more growth.
      08.10.16


    • Corrosion Control | Marine Coatings
      Marine Coatings

      Marine Coatings

      The market for marine and protective coatings is being driven by an increase in ship repair and maintenenace activities.
      Catherine Diamond, Associate Editor 08.10.16

    • Additives | Architectural Coatings | Pigments | Solvents
      Is There A Correlation Between Contact Angle And Stain Repellency?

      Is There A Correlation Between Contact Angle And Stain Repellency?

      ...
      Daniel J. Mania 07.14.16

    • Additives | Adhesives and Sealants | Wood Coatings

      Resins Supplier Directory

      Here is a look at the latest offerings from select resins suppliers. For more information on the products listed, please cont
      07.14.16


    • Additives | Binders

      Unique Solutions to Regulatory Concerns Affecting Cobalt and MEKO

      ...
      Richard Najdusak and Dr. Franjo Gol 06.08.16

    • Automotive Coatings | Industrial Coatings | Pigments | Powder Coatings | Price Increases
      Metallic Pigments

      Metallic Pigments

      Diversified trends in automotive colors and increased consumer competition are driving this market forward.
      Catherine Diamond, Associate Editor 06.08.16

    • Architectural Coatings | Automotive Coatings | Automotive Refinish | Industrial Coatings | Powder Coatings
      Latin America Paint And Coatings Update 2016

      Latin America Paint And Coatings Update 2016

      Regional demand is likely to exceed GDP in the region.
      Charles W. Thurston, Latin America Correspondent 06.08.16


    • Industrial Coatings | Powder Coatings
      The Industrial Coatings Market

      The Industrial Coatings Market

      The market for industrial and protective coatings has potential for growth in a number of key markets.
      Kerry Pianoforte, Editor 06.08.16

    • Architectural Coatings | Special Purpose Coatings

      Biocides Directory

      Here is a look at the latest offerings from select biocide suppliers.
      Kerry Pianoforte, Editor 05.09.16

    • Additives | Adhesives and Sealants | Architectural Coatings | Powder Coatings | Solvents
      Resins Update

      Resins Update

      All segments of this market are expected to grow steadily, particularly in Asia-Pacific.
      Catherine Diamond, Associate Editor 04.08.16


    • Additives | Architectural Coatings
      Low- and Zero-VOC Coatings

      Low- and Zero-VOC Coatings

      Low- and zero-VOC coatings are moving out of the specialty category and are becoming a must-have option.
      Kerry Pianoforte, Editor 04.08.16

    • Additives | Radcure Coatings | Wood Coatings

      Radiation-Curing Technologies

      ...
      Kerry Pianoforte, Editor 04.08.16

    • Additives | Pigments | Solvents
      From Past to Present, PVDF Coatings Remain a Leader  in the Architectural Paint Industry

      From Past to Present, PVDF Coatings Remain a Leader in the Architectural Paint Industry

      ...
      Jeff Alexander, VP, Valspar Corp. 03.21.16

    Trending
    • Hempel Announces Global Price Increase
    • Hempel Hires Global Head Of Renewable Energy
    • Raw Material Price Increases Pile Pressure On Paint Manufacturers
    • Hempel Launches Sustainability Framework: Futureproof
    • AkzoNobel Kicks Off Paint The Future Startup Challenge In China
    Breaking News
    • Gelest CEO Elected to National Academy of Engineering
    • PPG Appoints Tony Wu as VP, Automotive Refinish, Asia
    • PPG Appoints John Bruno as VP, Investor Relations
    • AkzoNobel Kicks off Paint the Future Startup Challenge in China
    • Hempel Hires Global Head of Renewable Energy
    View Breaking News >
    CURRENT ISSUE

    February 2021

    • Mixing Equipment Directory
    • The Wood Coatings Market
    • Antimicrobial Coatings Market
    • View More >

    Cookies help us to provide you with an excellent service. By using our website, you declare yourself in agreement with our use of cookies.
    You can obtain detailed information about the use of cookies on our website by clicking on "More information”.

    • About Us
    • Privacy Policy
    • Terms And Conditions
    • Contact Us

    follow us

    Subscribe
    Nutraceuticals World

    Latest Breaking News From Nutraceuticals World

    Martin Bauer Group Acquires Majority Stake in Beverage Company Power Brands
    Gencor Announces Positive Results in VeriSperse Bioavailability Study
    PanTheryx Inc. Acquires TruBiotics Brand from Bayer HealthCare LLC
    Coatings World

    Latest Breaking News From Coatings World

    Mule-Hide Products Co. Promotes Steven Litaker to Territory Manager
    Terra Firma, Wanhua Announce New Distribution Partnership
    Gelest CEO Elected to National Academy of Engineering
    Medical Product Outsourcing

    Latest Breaking News From Medical Product Outsourcing

    Axonics Buys Contura to Expand to Stress Urinary Incontinence
    Nurx Appoints Chief Medical Officer
    Median Technologies, UC San Diego to Partner on AI-Based Medical Imaging Technology
    Contract Pharma

    Latest Breaking News From Contract Pharma

    J&J’s Single-Dose COVID-19 Vax Issued EUA
    Icon to Acquire PRA Health Sciences
    Phlow Corp. and USP Form Alliance
    Beauty Packaging

    Latest Breaking News From Beauty Packaging

    Universal Engraving Announces New President
    Raw Sugar Living Expands to Target with New Collection
    Supporting Female Beauty Brand Founders on International Women's Day
    Happi

    Latest Breaking News From Happi

    ACI and CBC Launch Webpage About ‘Quats’
    L’Occitane Launches Hand Cream Inspired by Women
    Kiehl’s Partners with Gyrl Wonder
    Ink World

    Latest Breaking News From Ink World

    Access Direct Mail Doubles Revenue with SCREEN's Truepress Jet520HD
    Etiflex Enters New Markets with Nilpeter FA-22 Installation
    Hydrocarbon Solvents Market to Surpass $8.1 Billion by 2030
    Label & Narrow Web

    Latest Breaking News From Label & Narrow Web

    TLMI analyzes pandemic's effect on label industry in new report
    UEI names Ross Hutchison president
    Schreiner MediPharm and AARDEX partner for clinical trials
    Nonwovens Industry

    Latest Breaking News From Nonwovens Industry

    U.S. Nonwovens Rebrands as Radienz Living
    What You’re Reading on Nonwovens-Industry.com
    Texas Medical Technology Partners with My Protect Kit
    Orthopedic Design & Technology

    Latest Breaking News From Orthopedic Design & Technology

    Pandemic Pain: NuVasive's 2020 Sales Fall 10 Percent
    Fusion Robotics Receives FDA Clearance for Spinal Navigation and Robotics System
    Kaia Health Unveils Next-Gen Complete MSK Care Solutions
    Printed Electronics Now

    Latest Breaking News From Printed Electronics Now

    Comercial Kywi Improves Customer Service, Front-Store Operations with Zebra Mobile Solution
    Global Printed Circuit Board Market Projected to Reach $69.32 Billion by 2027
    Global Smart Glass Market to Register 6.8% CAGR Between 2021-28: Grand View Research

    Copyright © 2021 Rodman Media. All rights reserved. Use of this constitutes acceptance of our privacy policy The material on this site may not be reproduced, distributed, transmitted, or otherwise used, except with the prior written permission of Rodman Media.

    AD BLOCKER DETECTED

    Our website is made possible by displaying online advertisements to our visitors.
    Please consider supporting us by disabling your ad blocker.


    FREE SUBSCRIPTION Already a subscriber? Login