Browse the most recent issues of Coatings World Magazine, featuring timely insights and industry-leading analysis.
Access the interactive digital version of the magazine with multimedia enhancements and exclusive online features.
Join a global community of coatings professionals—subscribe to receive the magazine in print or digital formats.
Promote your brand to decision-makers across the global coatings value chain with targeted advertising options.
Review our standards for submitting articles and technical content to ensure alignment with editorial goals.
Understand how your data is collected, stored, and used when interacting with Coatings World Magazine.
Immediate updates on significant industry developments.
News from major and regional paint and coatings producers.
Updates from raw material and equipment suppliers.
Leadership changes and notable appointments.
Mergers, acquisitions, and earnings reports across the industry.
Data-driven insights into regional and global coatings markets.
Interviews with executives, innovators, and influencers in the coatings sector.
Explore long-form articles and special reports that analyze trends, technologies, and business strategies in coatings.
Recurring editorial pieces offering expert perspectives and commentary on regulatory, sustainability, and R&D topics.
Access original interviews, Q&As, and insights that offer a deeper understanding of key industry developments.
Industry leaders weigh in on technical advancements, market challenges, and future opportunities.
Explore color trend predictions and their influence on coatings design, formulation, and application.
Profiles and rankings of the world’s leading coatings manufacturers and suppliers.
Comprehensive resource for locating suppliers of coatings materials and services.
Connect with distributors of raw materials, packaging, and equipment.
Showcase your company’s services, products, and expertise.
Look up definitions for key terms and concepts used across the coatings industry.
Full-length videos covering events, innovations, and thought leadership.
Short-form video interviews offering quick updates and takeaways.
Audio interviews and discussions with industry experts and insiders.
In-depth digital publications on coatings technologies and trends.
Research-backed documents examining industry challenges and solutions.
Informational materials highlighting products, services, and companies.
Company-sponsored articles offering valuable insights, case studies, and product applications.
Company announcements, product launches, and business developments from across the coatings sector.
Search for career opportunities in the coatings industry and connect with hiring companies.
What are you searching for?
February 12, 2018
By: Jeff Elliott
Technical Writer
Plasma treatments are a powerful technique for solving challenging surface issues whether through precision cleaning or by increasing surface wettability to promote adhesion. Plasma can also be used to deposit a wide range of chemistries onto surfaces. So, when surface challenges arise and engineers and production personnel are tasked with evaluating plasma as a possible solution, it often involves a quick immersion into the physics and chemistry behind the technology. But it also extends to how plasma is applied to each part, the type and size of chamber, tooling options, and facility requirements. Because any investment in technology must be justified based on ROI, factors such as budget, throughput and maintenance costs, must be considered prior to equipment purchase. Therefore, whether looking to purchase equipment for full-scale manufacturing or for R & D, here are some of the key factors that should be considered when approaching an equipment vendor. Plasma Consideration With the right type and configuration of equipment, the collective properties of the plasma (ions, electrons and radicals) produced in the chamber can be controlled to alter the properties of surfaces without affecting the underlying materials. For example, surface etching can be achieved through pure chemical etching of the surfaces or through physical etching or through both chemical and physical etchings. In chemical etching, plasma activated gas species attack the material surfaces forming volatile derivatives of the materials that leave the surfaces. In physical etching, ions in the plasma are accelerated towards the substrate surfaces. On their way to the substrate surfaces they may collide with other neutral atoms/molecules to ionize them while the original ions may become neutrals. The ionized atoms/molecules start accelerating toward the substrates and the newly created neutrals continue heading toward the substrate surfaces by maintaining their pre collision velocities. As a result large number of ions and neutral species bombard the substrate surfaces causing substrate materials to eject from the surfaces. In fact, there are so many combinations and potential chemistries involved, that equipment vendors such as PVA TePla in Corona, Calif. often host customers to answer questions and assist in the selection of the right tool for their applications. Although there continues to be much to learn about the physics of plasma, lead scientist Dr. Michael Barden said that most customers are more focused on the results of the process and how the modified surfaces can be tested. Even more questions are targeted at the type of tool that should be purchased, the facility requirements and the overall costs. “Many customers don’t care how the plasma is generated, they care about the cost, throughput and the outcome,” said Barden. Equipment Selection Although there are atmospheric systems for inline manufacturing, the majority of plasma treatments are conducted in low pressure vacuum chambers. So, from an engineering perspective, Barden says it can be important to understand the basics of what occurs within the plasma chamber. Most low pressure plasma system involves a chamber, vacuum pump, power supply, electrodes, the system interface and control, electrical components, gas/monomer distribution components, and exhaust system. In general, these components have multiple options to accommodate the various processes that will be performed in the chamber. In other words, if the vacuum chamber will be used for chemical deposition, surface functionalization, etching or cleaning, it likely will require a slightly different gas delivery system, power generator, temperature controls or chamber pressure. According to Barden, there are three primary cost drivers in any plasma system – the type and size of chamber, power generator and vacuum pump. The vacuum chamber is a rigid enclosure from which air and other gases are removed by a vacuum pump. The size of the chamber is dictated by the largest size of substrate that will be processed in the chamber. This volume requirement directly influences the size of vacuum pump required. Vacuum pumps come in wet and dry configurations. Wet pumps use low vapor pressure oil to seal in gas to create vacuum and also lubricate its components. Dry pumps do not use any oil to seal in gas, but they may or may not use oil to lubricate the components. The size and speed of the pump have a direct impact on processing speed as well as actual process results that can be achieved. In addition a whole variety of factors including size of the chamber, the distance the pump is from the chamber, the length and diameter of the hose connecting the pump and the chamber, the base processing pressure required, time required to reach the base pressure, process pressure and gas load during processing. As for the power generator, the type and size of substrate is a determining factor. If it is a conducting substrate, a dc or rf or mw power supply can be used. Non-conducting materials require an rf or mw power supply. There can be other important considerations as well. The temperature requirements for the processes conducted in the chamber will determine the required maximum substrate temperature for the system. Understanding the thermal budget of the substrates may require adding a temperature controller/chiller to the system. Another key factor is whether the tool will be used for production or R&D. If for production, will it be a fully automated or a semi-automated? For R&D, will it be a semi-automated or a manual? Facility Considerations For production engineers, the facility considerations such as the footprint of the system, types of connections required and accessibility for maintenance are equally important. So, too, are the ongoing consumable costs for electricity, gas, compressed air, reagents and chemicals involved. The production volumes factor heavily in this consideration as the cost-per-piece for 100,000 parts is very different than production of 8 million parts. “The duty cycle of the equipment can determine whether the most cost-effective vacuum pump option is wet or dry, for example,” Barden said. Estimating the number of hours each day the tool will be utilized is also important to calculate cost of ownership (COO). Budget Considerations According to Barden, most potential customers arrive with a pre-determined budget and delivery timeline. For this reason, companies like PVA TePla prefer to understand the parameters up front so they can tailor a solution that meets the requirements and throughput of the applications. “If we understand the budget constraints going in, then we can configure the tool based on customer prioritized process requirements. This may involve configuring the system to meet some of the process requirements while keeping options open for future upgrades to meet the other requirements when more money becomes available,” Barden said. Still delivering a quote is only part of the battle. Barden says it is incumbent on companies like PVA TePla to assist customers in calculating COO to justifying the purchases to company execs. “Generally we are helping the engineers, or the process engineers, develop the case for their ROI,” Barden said. For more information, contact PVA TePla America at 951-371-2500 or 800-527-5667, rayc@pvateplaamerica.comor visit www.pvateplaamerica.com. About the author: Jeff Elliott is a Torrance, Calif.-based technical writer. He has researched and written about industrial technologies and issues for the past 20 years. Photo courtesy Pixabay
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !