Browse the most recent issues of Coatings World Magazine, featuring timely insights and industry-leading analysis.
Access the interactive digital version of the magazine with multimedia enhancements and exclusive online features.
Join a global community of coatings professionals—subscribe to receive the magazine in print or digital formats.
Promote your brand to decision-makers across the global coatings value chain with targeted advertising options.
Review our standards for submitting articles and technical content to ensure alignment with editorial goals.
Understand how your data is collected, stored, and used when interacting with Coatings World Magazine.
Immediate updates on significant industry developments.
News from major and regional paint and coatings producers.
Updates from raw material and equipment suppliers.
Leadership changes and notable appointments.
Mergers, acquisitions, and earnings reports across the industry.
Data-driven insights into regional and global coatings markets.
Interviews with executives, innovators, and influencers in the coatings sector.
Explore long-form articles and special reports that analyze trends, technologies, and business strategies in coatings.
Recurring editorial pieces offering expert perspectives and commentary on regulatory, sustainability, and R&D topics.
Access original interviews, Q&As, and insights that offer a deeper understanding of key industry developments.
Industry leaders weigh in on technical advancements, market challenges, and future opportunities.
Explore color trend predictions and their influence on coatings design, formulation, and application.
Profiles and rankings of the world’s leading coatings manufacturers and suppliers.
Comprehensive resource for locating suppliers of coatings materials and services.
Connect with distributors of raw materials, packaging, and equipment.
Showcase your company’s services, products, and expertise.
Look up definitions for key terms and concepts used across the coatings industry.
Full-length videos covering events, innovations, and thought leadership.
Short-form video interviews offering quick updates and takeaways.
Audio interviews and discussions with industry experts and insiders.
In-depth digital publications on coatings technologies and trends.
Research-backed documents examining industry challenges and solutions.
Informational materials highlighting products, services, and companies.
Company-sponsored articles offering valuable insights, case studies, and product applications.
Company announcements, product launches, and business developments from across the coatings sector.
Search for career opportunities in the coatings industry and connect with hiring companies.
What are you searching for?
A look at the global market for high heat resistant coating systems. The first of a two-part series.
April 6, 2009
By: Phil Phillips
Certain organic binders, notably phenolics and epoxies, are tolerant of relatively high temperatures without modification, but coatings designed to provide protection against high service temperatures generally incorporate silicon in some form or another. Since the silicon bond requires much higher energy for its disruption than the corresponding carbon bonds in analogous molecules, it is much more resistant to thermal degradation. Silicone is so effective in this respect that some degree of thermal resistance can be achieved simply by cold blending ten percent or more of a silicone resin with a conventional binder. The temperatures that such a coating will resist are limited to approximately 220 C. Copolymerization, even with modest levels of silicone resins, is more efficient, and can be achieved with, for example, alkyds, phenolics, epoxies, acrylics and saturated polyesters. Silicone may also be utilized in the form of inorganic silicate coatings, which form a glassy layer on curing, and will react with both masonry and steel substrates to form a tight bond. At the top end of the performance spectrum, silicone resins which will withstand temperatures above 800 C have been commercially available for more than 50 years. Systems which will withstand more than 1,000 C have been developed, originally for space vehicles, but now with applications in the chemicals industry. However, these pure silicone resins are expensive and their curing via condensation of the silanol groups requires high temperatures. Thus alkyl silicones or the copolymers discussed above are more widely used and are capable of meeting the majority of domestic and industrial requirements. A means to avoid the time and expense of high-temperature stoving is to formulate “burn-off” coatings. These incorporate a binder system which cures at low or ambient temperatures, bonding the coating to the substrate. The organic binder decomposes when parts are exposed to service temperatures high enough to cure the silicone binder. The system is not ideal, in that its effectiveness will depend upon the conditions under which this secondary curing occurs, and air pollution during this phase is inevitable. A more sophisticated variation is to use, for example, titanium esters mixed with aluminum flake. The esters can be formulated into the binder system of stoving paints which will resist temperatures of up to 400 C. Above that temperature, burn-off occurs, depositing a titanium-aluminum complex coating which has good hardness and adhesion, and can resist temperatures of up to 800 C. Powder coatings which will resist temperatures of 300-500 C, depending on formulation, have been on the market for several years and are used for applications such as barbecues, stoves and exhaust systems. An important consideration here is that powder coatings are often applied at relatively high film builds, but for these applications the film must be kept thin to minimize thermal stresses on heating.
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !