Browse the most recent issues of Coatings World Magazine, featuring timely insights and industry-leading analysis.
Access the interactive digital version of the magazine with multimedia enhancements and exclusive online features.
Join a global community of coatings professionals—subscribe to receive the magazine in print or digital formats.
Promote your brand to decision-makers across the global coatings value chain with targeted advertising options.
Review our standards for submitting articles and technical content to ensure alignment with editorial goals.
Understand how your data is collected, stored, and used when interacting with Coatings World Magazine.
Immediate updates on significant industry developments.
News from major and regional paint and coatings producers.
Updates from raw material and equipment suppliers.
Leadership changes and notable appointments.
Mergers, acquisitions, and earnings reports across the industry.
Data-driven insights into regional and global coatings markets.
Interviews with executives, innovators, and influencers in the coatings sector.
Explore long-form articles and special reports that analyze trends, technologies, and business strategies in coatings.
Recurring editorial pieces offering expert perspectives and commentary on regulatory, sustainability, and R&D topics.
Access original interviews, Q&As, and insights that offer a deeper understanding of key industry developments.
Industry leaders weigh in on technical advancements, market challenges, and future opportunities.
Explore color trend predictions and their influence on coatings design, formulation, and application.
Profiles and rankings of the world’s leading coatings manufacturers and suppliers.
Comprehensive resource for locating suppliers of coatings materials and services.
Connect with distributors of raw materials, packaging, and equipment.
Showcase your company’s services, products, and expertise.
Look up definitions for key terms and concepts used across the coatings industry.
Full-length videos covering events, innovations, and thought leadership.
Short-form video interviews offering quick updates and takeaways.
Audio interviews and discussions with industry experts and insiders.
In-depth digital publications on coatings technologies and trends.
Research-backed documents examining industry challenges and solutions.
Informational materials highlighting products, services, and companies.
Company-sponsored articles offering valuable insights, case studies, and product applications.
Company announcements, product launches, and business developments from across the coatings sector.
Search for career opportunities in the coatings industry and connect with hiring companies.
What are you searching for?
Abstract UV curing processes have been used extensively in many different industries such as packaging, printing inks and protective coatings for wood, plastics and metal. Advantages of UV curing are instant drying, low operating cost, improved quality and reduced space. Waterborne UV curable coatings – green coatings – have been developed to replace conventional UV curable coatings with VOC emissions. It can be a challenge when light stabilizers are required to protect coatings to UV degradation. The novel light stabilizer (NLS) is developed specifically for waterborne UV curable coats. This article is a comparison study of three different light stabilizers to disperse in water and waterborne UV curable coating. Test data showed that NLS in a waterborne clear UV curable coating would not have negative impacts to cure speed. The results confirmed that by increasing the concentration of NLS in the top coat can effectively protect from UV light degradation. Introduction UV curable coatings require direct UV light to initiate monomers and oligomers. It is converted from a liquid into a solid film. UV curing coatings feature speed in production and are faster in drying. However, most polymers are susceptible to degradation by UV and visible light. It requires light stabilizers to enhance the durability from sunlight degradation. To understand more on the light stabilizers, it can be divided into two groups: UV absorbers (UVA) and the Hinder Amine Light Stabilizers (HALS). UVA’s function is absorbing UV light and transforming it into heat and the HALS is best known to capture free radical to prevent material degradation. It is important to know UV curable coatings especially in dry faster system. Photo initiator absorbs UV energy to initiate curing processes. UV absorber absorbs UV energy to prevent coatings damages. As a result, UV absorber and photo initiator are competing for UV energy to cause negative impacts about cure speed. The NLS can meet this problem. UV radiation is a well-accepted technology. However the UV curable coatings have odor, emission monomers and not zero VOC emission . The UV curable waterborne coating has both the advantages of waterborne coating and UV curable coating such as non toxic, pollution-free, and safety in use. In recent years the research and development has grown faster. This subject of this article is to show the use of newly developed liquid NLS, designed for waterborne UV curable coatings, is effectively to protect from UV light degradation and would not have negative impacts to cure speed. Experiment The model formulation used in this study was classification of light stabilizers and compositions of waterborne UV curable coating. Their detail compositions are shown in Table 1 and Table 2. Design of Experiment (DOE) was used to design test runs as well as to analyze test data. DOE technique allows us to validate the data. Dispersion Tests Waterborne UV curable coatings are based on water soluble or water dispersed resins. It is non-toxic, odorless and nonflammable. Liquid light stabilizers are normally not easy to disperse in water-based UV curable coatings. Adding UV stabilizers directly to water-based paint system will cause condensation in coatings and make it difficult to use. After mixing together, we use filter paper to test. If the residual is less, the performance is better. On the other hand, it can be used directly and homogenously disperse in waterborne UV Curable resin. According to dispersion test, NLS is the best performance in both systems. Photos of 10% different types of light stabilizers in waterborne UV curable coating is filtrated tested (as shown in Figure 2). Minimal Energy to Reach Curing Tests Waterborne based UV curable coatings were made with wire-wound rod on coated Leneta charts. The dry film thickness (DFT) was 15μm and heated in an oven at 60˚C for 2 min. The next were cured under a 1 x 150w/cm high-pressure Hg lamp. Cure speed was recorded when coating left no visible marks after a finger nail scratched across the coating surface a few times. The result shows that NLS would not have negative impacts to cur speed (as shown in Figure 2). Weathering Test Before and after exposure of delta Y measurements (as shown in Figure 3) of adding NLS, coatings would receive different degrees of the protection according to each consumption level. Evidently, a higher use level provides a better protection. Experiment procedure:w Model: Q-U-V Accelerated Weathering Tester Test Model: ASTM G154-1(QUV with UVB-340 light bulb) Test Time: 120 hours Material: Plastic Results Our data confirmed that NLS can be used directly and homogenously disperse very well in waterborne UV curable coating and water systems. Test data showed that NLS in a waterborne clear UV curable coating would not have negative impacts to cure speed. The increasing the concentration of NLS in the waterborne UV curable coating can effectively protect from UV light degradation. Conclusion Environmentally friendly coatings are the trend for future development in the coating industry. In this article we highlighted the benefits of using NLS in waterborne UV-curable coating system. Coating manufactures may still need to run the experiments to confirm their coating systems are compatible. The company who can offer tailor UV absorber and light stabilizer products will have the key to providing UV protection in the manufacturer’s coating products. Everlight Chemical Industrial Corporation 6th Fl, 77 Tun-Hua S. Rd. Taipei, Taiwan R.O.C Tel: +886-3-4837682; Fax: +886-3-4837683; gigi@ecic.com.tw; www.everlight-uva.com
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !