Welcome Guest to Coatings World    Login || Register
Last Updated Saturday, December 20 2014
Print

CCEI & ExxonMobil to Conduct Research on Production of Renewable Chemicals from Biomass



Published April 16, 2014
The Catalysis Center for Energy Innovation (CCEI), a U.S. Department of Energy-Energy Frontier Research Center led by the University of Delaware, has announced a two-year program with ExxonMobil to research renewable chemicals from biomass.

The research will focus on converting lignocellulosic (non-food) biomass such as trees and grasses to polymers that are identical to existing petrochemical products.

Research strategies to replace fossil fuel feedstocks for polymers have initially focused on new chemicals derived from biomass that have the same function but new structure. However, functional-replacement chemicals for new polymers frequently have physical properties that can make processing challenging and can be expensive to develop into new products.

The CCEI’s research focuses on using high throughput and low cost thermochemical (non-biological) catalysts to yield direct-replacement chemicals. "You can mix our renewable chemicals with the petroleum-based material and the consumer will not be able to tell the difference," says Paul Dauenhauer, professor, of the CCEI and the University of Massachusetts Amherst. Bio-derived direct-replacement chemicals can be directly blended at any ratio with existing petrochemical products.

Direct-replacement biomass-derived chemicals also provide increased economic and manufacturing flexibility. “Manufacturing of direct-replacement chemicals from biomass helps move towards renewable materials and a more diverse feedstock base for chemical producers,” says Dionisios Vlachos, director of the CCEI and Elizabeth Inez Kelley Professor of Chemical Engineering at UD.

This research program with ExxonMobil is a part of a larger effort by CCEI to create breakthrough technologies for the production of biofuels and chemicals from lignocellulosic biomass. The center is funded by the U.S. Department of Energy as part of the Energy Frontiers Research Center (EFRC) program which combines more than 20 faculty members with complementary research skills to collaborate on solving the world’s most pressing energy challenges.

Initiated in 2009, the CCEI has focused on renewable biofuels and chemicals by development of new catalytic technologies. In 2010, a CCEI research team introduced the first heterogeneous catalyst, Tin-Beta, to convert glucose into fructose. This is the first step in the production of a large number of targeted products including biofuels and biochemicals.

In 2012, another CCEI research team developed a new process to produce high yield (greater than 90 percent) p-xylene from biomass. In 2013, CCEI introduced the catalytic transfer hydrogenation technology to selectively convert furans into reduced ones and enable integration of processes from sugars to p-xylene.


blog comments powered by Disqus
Receive free Coatings World emails
Sign up now to receive the weekly newsletter, and more!

Enter your email address:
Company Spotlight
Sunin Machine Co., Ltd.
No.96, Chiao Ho Rd ,Chungho Dist
New Taipei City, Taiwan , 235
Taiwan Roc
View Profile
Lubrizol Advanced Materials, Inc.
9911 Brecksville Road
Cleveland, OH, 44141
US
View Profile
Houchi Chemical Co., Ltd
No.56, Fu Chow Street
Taipei, Taipei, 100
Taiwan
View Profile
Siltech Corporation
225 Wicksteed Avenue
Toronto, ON, M4H 1G5
Canada
View Profile
Keeneyes
18F, No.85, Sec. 1, Chung-Shiao E. Rd.
Taipei, Taiwan, 100
R.O.C.
View Profile
Shamrock Technologies, Inc.
Foot of Pacific Street
Newark, NJ, 07114
USA
View Profile
BASF Corporation
100 Campus Drive
Florham Park, NJ, 07932
US
View Profile
Micro Powders, Inc.
580 White Plains Rd.
Tarrytown, NY, 10591
US
View Profile
AZ Electronic Materials Co., Ltd.
No. 458-6, Sinsing Road Hu Kou Township Hsinchu Country 303, Taiwan
Hsinchu Country, Taiwan, 303
Taiwan
View Profile
Follow Coatings World On