Browse the most recent issues of Coatings World Magazine, featuring timely insights and industry-leading analysis.
Access the interactive digital version of the magazine with multimedia enhancements and exclusive online features.
Join a global community of coatings professionals—subscribe to receive the magazine in print or digital formats.
Promote your brand to decision-makers across the global coatings value chain with targeted advertising options.
Review our standards for submitting articles and technical content to ensure alignment with editorial goals.
Understand how your data is collected, stored, and used when interacting with Coatings World Magazine.
Immediate updates on significant industry developments.
News from major and regional paint and coatings producers.
Updates from raw material and equipment suppliers.
Leadership changes and notable appointments.
Mergers, acquisitions, and earnings reports across the industry.
Data-driven insights into regional and global coatings markets.
Interviews with executives, innovators, and influencers in the coatings sector.
Explore long-form articles and special reports that analyze trends, technologies, and business strategies in coatings.
Recurring editorial pieces offering expert perspectives and commentary on regulatory, sustainability, and R&D topics.
Access original interviews, Q&As, and insights that offer a deeper understanding of key industry developments.
Industry leaders weigh in on technical advancements, market challenges, and future opportunities.
Explore color trend predictions and their influence on coatings design, formulation, and application.
Profiles and rankings of the world’s leading coatings manufacturers and suppliers.
Comprehensive resource for locating suppliers of coatings materials and services.
Connect with distributors of raw materials, packaging, and equipment.
Showcase your company’s services, products, and expertise.
Look up definitions for key terms and concepts used across the coatings industry.
Full-length videos covering events, innovations, and thought leadership.
Short-form video interviews offering quick updates and takeaways.
Audio interviews and discussions with industry experts and insiders.
In-depth digital publications on coatings technologies and trends.
Research-backed documents examining industry challenges and solutions.
Informational materials highlighting products, services, and companies.
Company-sponsored articles offering valuable insights, case studies, and product applications.
Company announcements, product launches, and business developments from across the coatings sector.
Search for career opportunities in the coatings industry and connect with hiring companies.
What are you searching for?
June 3, 2016
By: Catherine Diamon
PPG will partner with Lawrence Livermore National Laboratory (LLNL) to use high-performance computers to help reduce glass fiber breakage during the fiber glass manufacturing process to improve yield, reduce waste and become more energy-efficient. The PPG/LLNL collaboration was recently awarded through the U.S. Department of Energy’s new High Performance Computing for Manufacturing (HPC4Mfg) program. Fiber glass is made using a continuous high-speed process. If even one of several thousand glass fibers breaks while being pulled through a die (or bushing), it causes the entire bundle of fibers to break, wasting a significant amount of glass and energy until the manufacturing process can be restarted. To help eliminate this waste, PPG and LLNL will develop numeric computer models to simulate the impact of thermal and physical environments on the glass-fiber forming process over a 4,000-tip bushing. The complexity and magnitude of the simulations requires the vast supercomputing resources at LLNL to model the process. John Meng, PPG senior research associate, fiber glass, and principal investigator for the project, said the program will develop models that, for the first time, are representative of real-world fiber glass manufacturing. “The fiber glass industry has simulated the impact of varying one process parameter over many fibers and changing several process parameters over one fiber, but no one has modeled multiple process parameters over the thousands of fibers needed to adequately simulate actual production,” he said. “The supercomputing capabilities at LLNL and PPG’s manufacturing expertise will enable us to develop sophisticated models that encompass all of these parameters. Ultimately, that will help us gain insight into fiber-forming and fiber-to-fiber interaction so that we can reduce fiber breaks through improved bushing design and fiber-forming processes.” PPG estimates that continuous-strand fiber glass manufacturers in the U.S. could save 1.7 TBtu annually by controlling fiber breaks. PPG will provide $99,000 in technical support to the project. The DOE will contribute $300,000 to LLNL to fund its effort on the project.
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !