• Login
    • Join
  • FOLLOW:
  • Subscribe Free
    • Magazine
    • eNewsletter
    Checkout
    • Magazine
    • News
    • Research
    • Markets & Technologies
    • Raw Materials
    • Top Companies
    • Directories
    • Jobs
    • Events
    • Microsites
    • More
  • Magazine
  • News
  • Research
  • Markets & Technologies
  • Raw Materials
  • Top Companies
  • Directories
  • Jobs
  • Events
  • Microsites
  • Current / Back Issues
    Features
    Business Corner
    Editorial
    Digital Edition
    eNewsletter Archive
    Our Team
    Editorial Guidelines
    Subscribe Now
    Advertise Now
    World Reports
    eBook
    Top Features
    Aerospace Coatings Market

    Energy Curing and Coil Coatings

    Lab/Testing Equipment Update

    High Performance and Special Effect Pigments

    The Wood Coatings Market
    Breaking News
    Online Exclusives
    Distributor News
    Financial News
    Paint & Coatings Manufacturer News
    People In the News
    Price Increases
    Product News
    Raw Materials & Equipment
    Video Bites
    Suppliers News
    Live From Shows
    Top News
    Chemetall Moves Towards Sustainability Goals

    X-Rite Launches Its CiF3200 Imaging Benchtop Spectrophotometer

    BASF Introduces Reactive Polyethylene Glycol Pluriol A 2400 I in Europe

    Teknos Unveils Next-Gen Interior Coatings at Ligna 2025

    ICP Group Appoints Todd Brown as VP of Operations
    Top Companies report
    Market Research
    White Papers / Tech Papers
    Technical Papers
    Product Spec Sheets
    World Reports
    Adhesives and Sealants
    Aerospace Coatings
    Architectural Coatings
    Automotive Coatings
    Automotive Refinish
    Business Operation
    Color Trends & Forecast
    Construction Chemicals
    Corrosion Control
    Industrial Coatings
    Laboratory Equipment
    Marine Coatings
    Market Trends & Forecast
    Powder Coatings
    Production Equipment
    Radcure Coatings
    Special Purpose Coatings
    Wood Coatings
    "Green" Coatings

    X-Rite Launches Its CiF3200 Imaging Benchtop Spectrophotometer

    Coatings World Interview: Bryan Kirchmer of CRTS Global

    Teknos Unveils Next-Gen Interior Coatings at Ligna 2025

    PPG Launches Clearcoats for Premium Collision Repair Segments

    PPG To Invest $380 Million in Aerospace Coatings Facility
    Additives
    Binders
    Pigments
    Solvents

    BASF Introduces Reactive Polyethylene Glycol Pluriol A 2400 I in Europe

    BASF Becomes First Producer of Renewable Ammonia in Central Europe

    BASF's Intermediates Division Converts European Amines Portfolio to 100% Renewable Electricity

    High Performance and Special Effect Pigments

    Strategic Value Partners and Blantyre Capital Acquire OQ Chemical
    Company Capabilities
    Buyers Guide
    Distributor Guide
    Add New Company
    International Buyers Guide Companies
    Evonik Corporation

    Gehring Montgomery Inc

    Vibrantz Technologies

    Shepherd Color Company, The

    WAB US Corp
    Industry Events
    Webinars
    Live From Show Event
    Top Events
    RadTech 2025 UV+EB Technology Expo & Conference

    Canadian Coatings Conference

    Paintistanbul & Turkcoat Congress and Exhibition

    Great Lakes Coatings Conference

    Coatings Expo Vietnam 2025
    Companies
    White Papers/Tech Papers
    Product Spec Sheets
    Equipment
    Literature/Brochures
    Videos
    International Buyers Guide Companies
    Evonik Corporation

    Gehring Montgomery Inc

    Vibrantz Technologies

    Shepherd Color Company, The

    WAB US Corp
    • Magazine
      • Current / Back Issues
      • Features
      • Editorial
      • Business Corner
      • Digital Edition
      • eNewsletter Archive
      • Editorial Guidelines
      • Subscribe Now
      • Advertise Now
    • Breaking News
    • Directories
      • Buyers Guide
      • Distributor Guide
      • Corporate Capabilities
      • Trade Associations
      • Add Your Company
    • Markets & Technologies
      • Adhesives and Sealants
      • Aerospace Coatings
      • Architectural Coatings
      • Automotive Coatings
      • Automotive Refinish
      • Business Operation
      • Color Trends & Forecast
      • Construction Chemicals
      • Corrosion Control
      • Industrial Coatings
      • Laboratory Equipment
      • Marine Coatings
      • Market Trends & Forecast
      • Powder Coatings
      • Production Equipment
      • Radcure Coatings
      • Special Purpose Coatings
      • Wood Coatings
      • "Green" Coatings
    • Raw Materials
      • Additives
      • Binders
      • Pigments
      • Solvents
    • World Reports
      • Africa Report
      • China Report
      • India/Asia Pacific Report
      • Europe Report
      • Latin America Report
      • Market Research
      • Russian Report
    • Top Companies
    • Online Exclusives
    • Glossary
    • Slideshows
    • Experts Opinions
    • Blog
    • eBook
    • Infographics
    • Videos
    • Podcasts
    • Whitepapers
    • Jobs
    • Microsites
      • Companies
      • White Papers/Tech Papers
      • Product Spec Sheets
      • Equipment
      • Literature/Brochures
      • Videos
    • Events
      • Industry Events
      • Live From Show Event
      • Webinars
    • About Us
      • About Us
      • Contact Us
      • Advertise With Us
      • Privacy Policy
      • Terms of Use
    Features

    Investigation Into Marine Concrete Anti-Fouling Coatings

    Long term ecologically sound answer to organic growth remains unsolved, however the use of titanium dioxide (TiO2) particles within coatings for concrete pavements have received considerable attention in recent years.

    Peter Hughes, Contributing Writer04.01.13
    Our civil engineers  involved  in  the  construction  or  maintenance  of  marine  concrete structures  are  faced  with  the problem of preventing unwelcome microbial growth in an environmentally friendly  way.  A long term ecologically sound answer to organic growth remains unsolved, however the use of titanium dioxide (TiO2) particles within coatings for concrete pavements have received considerable attention in recent years as these particles can trap and decompose organic and inorganic air pollutants by a photocatalytic process (1). In spite of these promising benefits, the durability and resistance to wear of TiO2 surface coatings upon fibre reinforced marine concrete has not been evaluated. In this article, the development of fundamental research on the application of TiO2-based photocatalysis in a marine environment will be introduced. The problems encountered at a UK study site restricting a larger scale application of the technology are discussed.

    Photocatalytic coatings are successfully used with many other building materials and have been shown to retard algal growth on concrete (2). In spite of these promising benefits, applications of this technology are currently limited. The durability of this technology in a marine application needs to be established before large-scale practical implementation is undertaken. Titanium dioxide (TiO2) is a white inorganic substance that is thermally stable, non-flammable and insoluble. TiO2, the oxide of the metal titanium, which is the ninth most abundant element in the earth’s crust, occurs in many rocks and mineral sands, the most economically important being ilmenite and rutile deposits. Ultra-fine (nano-scale) titanium dioxide (Anatase) was used in this research for surface treatments. The potential of titanium dioxide as a photocatalyst was discovered by (3). This process, which is similar to plant photosynthesis, allows the decomposition of water into oxygen and hydrogen in the presence of light, by means of a TiO2-anode (1). Based on this heterogeneous photocatalytic oxidation process, nitrogen oxides are oxidized into water-soluble nitrates while sulfur dioxide is oxidized into water-soluble sulfates; these substances can be washed away by moisture in the form of rainfall or seawater. The overall aim of this research, is to advance the understanding of how a photocatalytic (TiO2) coatings responds in a marine environment. This phase of work, carried out in the northwest of England, has recorded anti-fouling performance and intends to progress towards a non-toxic, environmentally-benign strategy for future industrial applications.

    The ‘Development’ Tio2 Coating Used In This Research

    Primary particles of ultrafine TiO2 within the development coating used was typically in the range of size from 10 to 60 nm, not only as existing discreet primary particles but as aggregates, with secondary particle sizes typically >100 nm. The coating was a stable aqueous dispersion (sol) of ultrafine TiO2 particles. Key features included an anatase crystal form with a 10 wt% of TiO2 content. The coating had a neutral pH of 8.5, with a high surface area (dry) of 300 m²/g, it dried clear, and was UV light activated with limited fluorescent light activity.  It is marketed for architectural applications.

    Tio2 Coating Application In This Study

    The coating procedure consisted of three independently applied layers brushed (concrete tiles) or roller applied (static site) onto the surface of concrete specimens, as per the manufacturer’s recommendation. The primer layer was applied to lower the viscosity of the material. This assisted in generating a good seal in the priming process through the filling of cracks and blowholes in the concrete surface. The primer formed a coating layer with a dry film thickness of 10µm. On top of the dried primer, an undercoat was applied after a drying time of 24h. Then, three separate topcoats were applied, each 10µm and a further 24h drying time, thus, bringing the overall thickness of the photocatalytic coating to 50µm. Although the coating was composed of a number of different layers, the comparatively short time between applications ensured that the finished complete layer did not show any distinct separate layers, but can be treated for all intents and purposes in this research as a single layer, see figure 1.

    Results And Discussion

    The biological complexity of the phenomenon, part of a larger study (4), referred to as marine biofouling, is enormous. It has been shown here and in previous research (5) that it is an ecological community with entities originating from all that we call life. Also, each organism has its own solution for how to find and attach on a surface, evolved during millions of years. It is the author’s view, it is impossible to invent new antifouling coatings without restricting the problem, meaning that several antifouling strategies have to be part of a holistic approach, leading to a bigger solution.

    There are however several obstacles to be cleared before titanium dioxide photocatalyst technology can be adopted in the control of marine biofouling. Not only the fact that the applicability of this technology is limited considerably because the catalyst works only where there is light, but the application of a coating to composite materials such as concrete has limitations, as shown in figure 2.

    The performance of the coating was observed to be heavily dependent on the underlying composite material. First of all, due to differences in intrinsic properties the synthetic fibres, in abundance at the surface of the concrete samples, inhibited a satisfactory bond between coating and substrate. The thermal coefficients of the coating were different from that of the concrete and its constituents. Thermal expansion and movement, referred to as ‘fibre pop out’, of exposed fibres instigated a cracking of the coating, as seen in figure 3, resulting in not only reduced photocatalytic activity but also structure and strength destructions.

    Furthermore, the attachment of filamentous algae to the surface of the coating, seen in figure 4, was also observed to be detrimental to its long term durability. Diatoms, illustrated in figure 5, form another component of marine biofilms and act a settlement mediator for larger fouling. The diatom attachment to coatings examined showed that this single algae cell accelerated coating degradation.

    Filamentous bacterial growth from within the matrix of the new concrete, as observed in figure 6, also played its part in the eventual cracking and delamination of the coating from its foundation. This previously unreported phenomena is discussed in more detail elsewhere (6). Coatings for marine concrete structures are subject to harsh environments, dynamic loads, continuous expansion and contraction by heat, rain/seawater splash, impacts from debris, erosion, micro-organisms etc. In this condition, most coatings deteriorate in a short period of time in the form of cracking, blistering, disbanding or chalking. The application of the TiO2 based coating tested in this research was not designed to defend from microbial growth from ‘within’ the concrete, effectively a living substratum, observed in figure 7. The occurrence of a bacterial biofilm formation under the coating has significantly effected the performance of the coating. A  study into the addition of TiO2 powder with an average size 21 nm (30% rutile and 70% anatase) into a bacterial colony, showed that 60–120 min were sufficient to destroy all the bacteria (7). Other workers also confirm that using lower dimension TiO2 particles leads to a faster bacterial destruction (8). These new observations of bacterial growth seen in figure 6 are detrimental to the long term durability of the coating and requires further investigation. This newly observed degradation mechanism, see figure 8, reported here, of a coating has implications for not only the construction sector.

    Conclusions

    Based on the analysis conducted, the following conclusions may be drawn that macro and micro synthetic fibres at the surface of concrete inhibit a strong and durable bond between the coating and the substratum, accelerating cracking and the eventual breakdown of the coating. Algal filamentous growth including diatoms attached to the surface of the coatings, applies further pressure on the integrity of the coating. Bacterial filamentous growth from within the matrix of the concrete, grows at the coating/concrete interface. This growth disrupts the bond between coating and substratum, leading to the de-lamination of the coating. Based on the results presented, further research is recommended to consider factors such as microbial growth under a coating, application methods and variation, coating composition, and long term durability. Furthermore, research in this field, needs to be developed to determine if any coatings have the potential to be effective in the long term strategy against marine biofouling.
     
    Peter Hughes is a final year PhD student at the University of Central Lancashire, UK, investigating marine biofouling and its implications for the durability of marine concrete.

    Acknowledgement
    The author thanks his supervisors for their guidance. D. Fairhurst, Professor I. Sherrington, Dr. N. Renevier, Professor L.H.G. Morton, Professor P. C. Robery and Dr. L. Cunningham.
    Further discussions are invited at: PHughes1@uclan.ac.uk

    References
    1. Fujishima, A., Rao, T., Tryk, D. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology. 1, 2000, 1-21.
    2. Peller, JR, Whitman, RL, Griffith, S, Harris, P, Peller, C, Scalziatti, J. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. Photoch. Photobio. A. 186, 2007, 212-217.
    3. Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 1972, 8-37.
    4. Hughes, P., Fairhurst, D., Sherrington, I., Renevier, N., Morton., L.H.G., Robbery, P., Cunningham, L. Microscopic examination of a new mechanism for accelerated degradation of synthetic fibre reinforced marine concrete. Construction and Building Materials. 41, 2013, 498-504.
    5. Hughes, P. A new mechanism for accelerated degradation of synthetic-fibre-reinforced marine concrete. Concrete. 9, 2012, Vol. 46, 18-20.
    6. Hughes, P. A study into the microbial growth within new marine concrete. Concrete. 1, 2013, Vol. 47, 34-36.
    7. Saito, T, Iwase J, Horic J, Morioka T. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. Journal of Photochem Photobio B Bio. 14, 1992, 369-379.
    8. Huang, Z, Maness P, Blakem D, Wolfrum E, Smolinski S, Jacoby W. Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobio A Chem. 130, 2000, 163-170.

     
     
     
    Related Searches
    • olin
    • therma
      Loading, Please Wait..
      Breaking News
      • Chemetall Moves Towards Sustainability Goals
      • X-Rite Launches Its CiF3200 Imaging Benchtop Spectrophotometer
      • BASF Introduces Reactive Polyethylene Glycol Pluriol A 2400 I in Europe
      • ICP Group Appoints Todd Brown as VP of Operations
      • Teknos Unveils Next-Gen Interior Coatings at Ligna 2025
      View Breaking News >
      CURRENT ISSUE

      April 2025

      • The Wood Coatings Market
      • The Importance of Utilizing Sustainability-Driven Innovation
      • Coating Resins Market
      • View More >

      Cookies help us to provide you with an excellent service. By using our website, you declare yourself in agreement with our use of cookies.
      You can obtain detailed information about the use of cookies on our website by clicking on "More information”.

      • About Us
      • Privacy Policy
      • Terms And Conditions
      • Contact Us

      follow us

      Subscribe

      Latest Breaking News From Nutraceuticals World

      Gattefossé Opens New Facilities in Mumbai, India
      TSI Group Unveils myHMB + Vitamin D Logo
      Indena to Showcase Metabolic, Brain Health Solutions at In-Vitality 2024

      Latest Breaking News From Coatings World

      Chemetall Moves Towards Sustainability Goals
      X-Rite Launches Its CiF3200 Imaging Benchtop Spectrophotometer
      BASF Introduces Reactive Polyethylene Glycol Pluriol A 2400 I in Europe

      Latest Breaking News From Medical Product Outsourcing

      StimLabs's Umbilical Cord-Derived Wound Care Product Released in U.S.
      New Medical-Grade Bio-Based PVC Compounds Introduced
      Croívalve Reports 1st Tricuspid Coaptation Valve Implant in U.S. Feasibility Study

      Latest Breaking News From Contract Pharma

      Neurocrine Bioscience’s CRENESSITY Becomes Commercially Available in the U.S.
      Roche's Parkinson's Disease Drug Misses Primary Endpoint
      PTC Therapeutics Submits Vantiquinone NDA to FDA

      Latest Breaking News From Beauty Packaging

      Weekly Recap: Coty Sells SKKN, Henkel Recall, Awards, & More
      Rare Beauty to Host Pop-Up Event with Sephora UK
      Cloud Haircare Expands to Walmart Stores Nationwide

      Latest Breaking News From Happi

      Cosmetify Names Nikkie de Jager the World’s Most Powerful Beauty Influencer
      Big Lips in the Small Wonder
      L’Oréal’s Bioprinted Skin & Dove’s Deodorant Launch

      Latest Breaking News From Ink World

      DuPont Unveils Brand Identity for Qnity Spin-Off
      Zeller+Gmelin Dry Offset Ink Line Achieves BPI Compostable Certification
      X-Rite Launches CiF3200 Imaging Benchtop Spectrophotometer

      Latest Breaking News From Label & Narrow Web

      Mexico's Flexopolis adds second Bobst flexo press
      Paramount Labels installs Rotatek Brava 450
      Esko teams with Bobst for smartGRAVURE System

      Latest Breaking News From Nonwovens Industry

      Ontex Announces New Hires
      Sandler Launches layerlab
      Andrex Adds Odor Control Technology to Wipes Line

      Latest Breaking News From Orthopedic Design & Technology

      David Thordarson Takes Charge of American Orthopaedic Foot & Ankle Society
      UPM Biomedicals Launches FibGel Injectable Nanocellulose Hydrogel for Medical Devices
      ONWARD Medical Attracts €50 Million in Capital

      Latest Breaking News From Printed Electronics Now

      DuPont Unveils Brand Identity for Qnity, Future Electronics Spin-Off
      Sensormatic Solutions Offers All-Inclusive Solutions and Services
      Infineon Launches Communication Campaign for 25-Year Anniversary

      Copyright © 2025 Rodman Media. All rights reserved. Use of this constitutes acceptance of our privacy policy The material on this site may not be reproduced, distributed, transmitted, or otherwise used, except with the prior written permission of Rodman Media.

      AD BLOCKER DETECTED

      Our website is made possible by displaying online advertisements to our visitors.
      Please consider supporting us by disabling your ad blocker.


      FREE SUBSCRIPTION Already a subscriber? Login